Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge.

نویسندگان

  • Vishal Tandon
  • Sharath K Bhagavatula
  • Wyatt C Nelson
  • Brian J Kirby
چکیده

This paper combines new experimental data for electrokinetic characterization of hydrophobic polymers with a detailed discussion of the putative origins of charge at water-hydrophobe interfaces. Complexities in determining the origin of charge are discussed in the context of design and modeling challenges for electrokinetic actuation in hydrophobic microfluidic devices with aqueous working fluids. Measurements of interfacial charge are complicated by slip and interfacial water structuring phenomena (see Part 2, this issue). Despite these complexities, it is shown that (i) several hydrophobic materials, such as Teflon and Zeonor, have predictable electrokinetic properties and (ii) electrokinetic data for hydrophobic microfluidic systems is most consistent with the postulate that hydroxyl ion adsorption is the origin of charge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure.

We discuss the structure of water at hydrophobic interfaces from the standpoint of its impact on electrokinetic phenomena in microfluidic devices fabricated from hydrophobic polymers such as Teflon or Zeonor. Water structuring at hydrophobic interfaces has been described as a source of interfacial charge (see Part 1, this issue), and dewetting phenomena, whether via depletion layers or nanobubb...

متن کامل

Surfactant-induced electroosmotic flow in microfluidic capillaries.

Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high-throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric-based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring chang...

متن کامل

Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow.

The zeta -potential of a solid-liquid interface is an important surface characterization quantity for applications ranging from the development of biomedical polymers to the design of microfluidic devices. This study presents a novel experimental technique to measure the zeta -potentials of flat surfaces. This method combines the Smoluchowski equation with the measured slope of current-time rel...

متن کامل

Zeta potential of microfluidic substrates: 2. Data for polymers.

Zeta potential data are reviewed for a variety of polymeric microfluidic substrate materials. Many of these materials currently used for microchip fabrication have only recently been employed for generation of electroosmotic flow. Despite their recent history, polymeric microfluidic substrates are currently used extensively for microchip separations and other techniques, and understanding of th...

متن کامل

Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electrophoresis

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2008